Introduction to Game Theory:

Two-by-Two Games

Version 10/29/17

Sticklebacks

If $C>B>C / 2>0$, what game is this?

The Number of Two-By-Two Matrices

How many 2×2 matrix games are there?

Let's simplify the question:
Assume there are no ties among a, b, c, d, and no ties among $\alpha, \beta, \gamma, \delta$
So, Ann (resp. Bob) has a strict ranking of a, b, c, d (resp. $\alpha, \beta, \gamma, \delta)$
How many rankings of a, b, c, d (resp. $\alpha, \beta, \gamma, \delta$) are there?

The Number of Two-By-Two Matrices Cont'd

If we distinguish games via the players' ordinal rankings of payoffs, how many different 2×2 matrix games are there?

We can consider as strategically equivalent any two matrices where one can be obtained from the other by: (1) interchanging rows, (2) interchanging columns, (3) interchanging players, (4) any sequence of these operations

After this reduction, we would obtain 78 strategically distinct 2×2 matrix games*

This is still too many to remember!
Let's take a more heuristic approach ...

Symmetric Two-By-Two Matrices

We will rank only a with respect to c, and b with respect to d
In this scheme, how many distinct symmetric 2×2 matrix games are there?

A Scheme of Four Symmetric Two-By-Two Matrices

Asymmetric Two-By-Two Matrices

What conceptually new behavior of the arrows arises in the asymmetric case?

A Scheme of Two Asymmetric Two-By-Two Matrices

One-Sided Game

Preview of Analysis of Game Matrices

In the Prisoner's Dilemma, the strategy X for Ann is dominant (also, undominated) and the strategy Y is dominated; and likewise for Bob

In the Battle of the Sexes and the Coordination Game, there are no dominance relationships

In the Battle of the Sexes, the pairs of strategies (X, Y) and (Y, X) constitute Nash equilibria

In the Coordination Game, the pairs of strategies (X, X) and (Y, Y) constitute Nash equilibria

In Matching Pennies, there is no Nash equilibrium (in "pure" strategies)
In the One-Sided Game, the strategy X for Ann is dominant and the strategy Y for Bob is iteratively undominated

